Identification of potential amino acid residues supporting anticodon recognition in yeast methionyl-tRNA synthetase

Laurence Despons, Philippe Walter, Bruno Senger, Jean-Pierre Ebel and Franco Fasiolo

Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France

Received 21 May 1991; revised version received 8 July 1991

Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last β strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn⁵⁸⁴ and Arg⁵⁸⁹) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.

Methionyl-tRNA synthetase; Site-directed mutagenesis; Anticodon binding region

1. INTRODUCTION

The structure of a fully active fragment of the E. coli methionyl-tRNA synthetase (MetRS) complexed with ATP has recently been resolved at high resolution [1], but information about the regions that participate in the complex with the tRNA has only been generated by genetic and chemical cross-linking experiments. The terminal adenosine of tRNA^{Met} is proximal to residues Lys⁶¹ and Lys³³⁵ when bound to the synthetase [2] and peptide region 528-533 has been proposed to play a role in guiding the acceptor stem in the active site [3]. The interaction with the anticodon bases which specify methionine acceptance in the tRNA [4] is restricted to residues 451-467 [5-7]. This region is characterised by the presence of a tryptophane residue (Trp461) which is conserved in all methionyl-tRNA synthetases with the exception of the yeast cytoplasmic enzyme, and has been shown to interact positively with methionine anticodons and negatively with non-methionine anticodons [6,7]. Recently, a structural model of the E. coli tRNA^{Mct}-MetRS complex has been suggested based on structural similarities between methionyl- and the tRNA bound E. coli glutaminyl-tRNA synthetase [8]. In this model, the positioning of the anticodon near Trp461 at the extreme periphery of the molecule is determined by a long αhelix which extends along the entire length of the D and anticodon stems. In a previous attempt to identify the hydrogen bond network between amino acid residues of yeast methionyl-tRNA synthetase and the anticodon

Correspondence address: F. Fasiolo, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.

triplet of the cognate tRNA^{Met}, we have analysed an α-helical region that corresponded to the E. coli methionyl-tRNA synthetase anticodon binding region (helix H4' in Fig. 1). We have mutated more than 10 potential amino acid donors in the equivalent yeast sequence and found that these mutations had little effect on tRNA recognition (unpublished results). This result suggests that the determinants of the anticodon binding region in the yeast system are located elsewhere in the molecule. New contacts could be identified by modelling the interaction of the tRNA with a structural model of the yeast methionyl-tRNA synthetase. In particular we identified an asparagine residue that is directly adjacent to the anticodon when the tRNA is docked to the synthetase. By sequence comparison, we noted that this asparagine residue falls in a highly conserved amino acid region that is found in all methionyl-tRNA synthetases so far sequenced. Therefore we mutated this cluster of conserved residues and analysed their effect in tRNA aminoacylation.

2. MATERIALS AND METHODS

2.1. Strains and plasmids

The E. coli strain JM101 [6] was used as recipient for the various plasmids and M13 phages. The E. coli strain TG1 was used in transformations by phosphorothioate DNA. The genotype of TG1 is indicated by the supplier (Amersham). Plasmid pMVT was the source of isolation of MES1 gene. It allows overexpression of the MES1 protein in a recipient strain FF1 (mes1,ura3) that harbours a chromosomally altered methionyl-tRNA synthetase whose activity is undetectable in vitro [9].

2.2. Enzymes and reagents

Restriction endonucleases, T4 DNA ligase and E. coli DNA polymerase I (Klenow fragment) were purchased from Boehringer Mann-

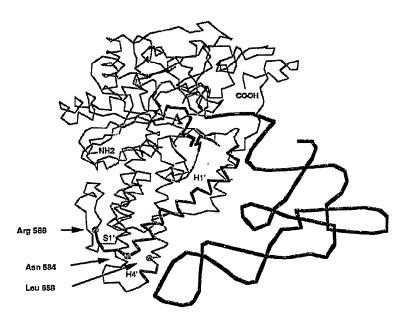


Fig. 1. Juxtaposition of the yeast MetRS model (catalytic core) with the phosphate backbone tRNA, in the phosphate backbone of the tRNA and the α-carbon backbone of the protein starting from residue 192 are shown. Region A is drawn in heavy lines and represents the HIGH and the KMSKS regions. Arrows are pointing to the positions of the carbon α spheres of the residues mentioned in the text. The coordinates of S1', H4' and H1' are taken from Brunie et al. [1].

heim (Germany). [α -35S]dATP and ¹²⁵I-protein A were purchased from Amersham (UK).

2.3. Site-directed mutagenesis of the MESI structural gene

The Amersham mutagenesis system based on the method of Eckstein et al. [10] was used to create single base pair mutations. The HindIII-BamHI fragment from the MES1 gene was subcloned into M13mp19 and used as DNA template. After transformation of the TG1 strain, positive clones were identified by sequencing the DNA of four AmpR colonies using the Sanger dideoxy method [11].

2.4. Reconstruction of mesl mutants

The DNA (1 μ g) from M13 phages carrying the mutated MES1 sequences were digested by ClaI and HindIII restriction enzy. 3 (2 units) and the resulting digest was ligated directly into plasmid pMVT that has been successively digested with TthIII, ClaI, HindIII (partial digest) and dephosphorylated. We transformed the FF1 recipient with the ligation mixture and selected colonies with the Ura3⁺ phenotype in the presence of methionine (100 μ g/mI). Positive clones were counter-selected for the Met⁻ phenotype. Both activities, the ATP-PPi exchange and the tRNA aminoacylation were measured for one Met⁻ colony and each Met⁻ colony. The complete sequence of the reconstructed gene was verified. We did not find additional mutations to those introduced by site-directed mutagenesis.

2.5. Methionyl-tRNA synthetase activity measurements in crude extracts

Cytoplasmic methionyl-tRNA synthetase was tested in crude extracts from exponentially growing cells, obtained by mechanical breakage using glass beads. Aminoacylation reactions were carried out at 25°C under the following conditions: 144 mM Tris-HCl, pH 7.8; 5 mM dithiothreitol; 2 mM ATP; 10 mM MgCl₂; 0.1 mM [14 C]methionine (51 μ Ci/ μ mol); 6 mg/ml yeast tRNA (the fraction of tRNA Met is 2%); and 5 mg/ml bovine serum albumin. At various time intervals 40 μ l aliquots from a 200 μ l reaction mixture were spotted onto Whatman paper disks and quenched by 5% trichloroacetic acid. Radioactivity was counted in a toluene-based scintillant. The ATP-pyrophosphate exchange assays were done at 25°C using: 144 mM Tris-HCl, pH 7.8; 2 mM ATP; 2 mM [12 P]PPi (0.35 μ Ci/ μ mol); 5 mM methionine; 10 mM potassium fluoride (an inhibitor of endogenous

pyrophosphatase); 0.1 mM phenylmethanesulphonylfluoride, and various amounts of crude enzyme. Labeled ATP was adsorbed onto charcoal, washed with water and the radioactivity was monitored by scintillation counting as above. One unit of activity corresponded to 1 nmol of [14C]methionine incorporated into tRNA per min or 1 nmol of [152P]phosphate incorporated into ATP per min. The specific amount of methionyl-tRNA synthetase in the protein sample was estimated by Western blotting. Protein samples were run on 10% polyacrylamide gels in the presence of 0.1% sodium dodecylsulphate. Conditions for the transfer of proteins to nitrocellulose membranes were as described in Schleicher and Schuell manual No2. The protein band corresponding to methionyl-tRNA synthetase was detected using DEAE-Sephadex-purified antibodies (100 µg) and 125 I-protein A (0.7 mCi at 50 mCi/mg).

3. RESULTS AND DISCUSSION

3.1. Sequence homology between various methionyltRNA synthetases

The overall homology between methionyl-tRNA synthetases from various sources [12-14] beyond the last β strand of the Rossmann fold is low (20% identities) compared to that of the nucleotide binding fold (40%). However, small regions of conserved amino acid residues could be identified (Fig. 2). One of these is the GNLV-R consensus sequence that is found in all methionyl-tRNA synthetases so far sequenced. A spectrum of semi-conservative amino acid replacements was sought for residues Asn⁵⁸⁴ and Arg⁵⁸⁸ of the yeast cytoplasmic enzyme. At position 584, we have analysed the steric effect of a methylene group and a negative charge on the asparagine side chain by producing the mutants Asn⁵⁸⁴Gln and Asn⁵⁸⁴Asp. To distinguish whether the side chain of arginine 588 makes a hydrogen or an ionic bond with the tRNA we have tested the replacements

```
plprqivVhG hwlc.NGmKM SKSlGnvVdp idmaryYgaD ivRWFllens kleeD..gdf qEaklyetre llvskwGNLI nRccgskfni era.Vmkfsd 419
pMyrhLnVgG FilgpdGrKM SKtlGnvVdp fallekYgrD alRYtlLrei pygqDt.pvs eEaLrtRyea DLaddlGNLV qRtramlfrf acGrIpepva 377
rkpsnLfVhG Yvtv.NGaKM SKSrGtfIka stwlnhFdaD slRYYytakl ssriDdidln lEdFvqRvna DivnkvvNLa sRnagfinkr fdGvlas.el 412
1scmrsm.Frc
2tthmrs.Frq
 3ecmrs.Frg
 4scmrs.Frq
                tMlnhLntte YlqyeNG.Kf SKSrGvgVfg nnaqdsgisp svWRYyLasv rpessdshfs wDdFvaRnns ELlanlGNFV nRlikfvnak ynGvVpkfdp 606
                -M---L-V-G Y----NG-KM SKS-G--V-- -----Y--D
                                                                  --RYY-L---
  Consensus
                                                                               ----D----- -E-F--R--- DL----GNLV
                                                                                 <#################
                                           < 54> <# He#>
                   <=== Be ===>
                                                                  <=Bf=>
                                                                                                                    <$1'>
1scmrsm.Frg
                kanfqFqeif qnepivseri enlAklLnks qevFDekiAi sqypqllrhv wsiindaNtL Vqns.kPWer eldqqDn...
                                                                                                                    .. Iiflamet sRIISilcgs 513
               geelaeg...... tglagrLrpl vreLkFhval ee.....a MayvkalNry InEk.kPwel fkkepEea..
2tthmrs.Frg
                                                                                                                    rAVlyrvveg lRIaSilltP 454
 3ecmrs.Frg
                adpqlYktf. ..... tdaAevigea wesrEFgkAv re.....i MaladlaNrY VdEq.aPWvv akqegrdadl
                                                                                                                    qAlcsmginl fRVlmtylkP 493
 4scmrs.Frg
               kkvsnYd......glv kdineiLsny vkeMELgher rglei...a MslsargNqF lqEnkldntl fsqspEks..
                                                                                                                    dAVvavglni iyavSsiitP 690
  Consensus
                                                                                                                    -A----- -RI~S----P
                   <########### H2" #############
                                                                H3' ####### <# H4'#>
                                                                                                                    < H5' > <## H6' ##>
1scmrsm.Frg
                iiP.sLsqsf ldr.idvske krtinyarlg sdktygkqsn kkgreVpLkK
                                                                                Ipfrigeeat nmrs
2tthmrs.Frq
                                                                                                   513
                aMPdkMaElr raLgLkeevr l.. Eeaerwg Laeprpipee a...pVlFpK
                                                                                kEakveakok eeaw
                vLP.kLtEra eaF.Lntelt w..Dgiqq.p Llghkvnpfk alynrIdMrq
 3ecmrs.Frq
                                                                                VEalveaske evka
                                                                                                   552
 4scmrs.Frg
               yMP.eigEki nkM.Lnapal kidDrfhlai Leghninkae ylfqrIdekK
                                                                                IDewrakygg qqv
  Consensus
                  <## H7' ##>
                                              <### HB! ####>
```

Fig. 2. Sequence alignment of the C-terminal region of various methionyl-tRNA synthetases. The alignment is shown starting from the signature sequence KMSKS. The last β strand of the Rossman fold is designated as β E according to the nomenclature adopted by Brunie et al. [1]. The abbreviations used are: yeast cytoplasmic enzyme (scmrs); yeast mitochondrial enzyme (scmrsm); E. coli enzyme (ecmrs), and Thermus thermophilus enzyme (tthmrs). Numbering is from the N-terminus. The secondary structure assignments are taken from the coordinates of the resolved structure of the E. coli enzyme (1). Helical regions are represented by (###) and β strands by (===).

of Arg into glutamine and lysine. To test the importance of aromatic hydrophobic interactions we have changed Phe⁵⁸⁵ into alanine.

3.2. Rationale for the selection of mutant enzymes and measurement of the enzyme activities

Because it was very difficult to obtain mutated DNA by the phosphorothioate method using the phagemid pMVT (containing the entire MES1 gene), we performed the mutagenesis in the MES1 HindIII-BamHI fragment that covers most of the adenylate binding domain and the entire C-terminal helical domain. The mes1 mutants were reconstructed directly from a ligation mixture of two independent HindIII-ClaI digests of pMVT vector and M13 recombinants bearing the mutated mes1 sequences. As we used a ligation mixture to transform the recipient strain having a defective methionyl-tRNA synthetase, 4 possibilities can be envisaged: complementation by the pMVT vector due to incomplete digestion and/or dephosphorylation; complementation by the mutant methionyl-tRNA synthetase whose in vivo aminoacylation level is high enough to sustain growth, failure of complementation due to size trimming of the 5' end overhangs or ligation of concatemers, or finally, failure of complementation due to non functional methionyl-tRNA synthetase mutants. The latter possibility can be distinguished from all the other ones by determining the methionine phenotype and measuring the enzyme activities of the corresponding colonies. Phenotypically, they should be Met and the mutant protein should display impaired ATP-PPi exchange activity but hampered tRNA aminoacylation if the mutation specifically affects the tRNA-binding or the transfer step of the activated amino acid. Mutants with only partially altered tRNA^{Met} aminoacylation activity give rise to colonies with the Met+ phenotype. These mutants will be distinguished from wild type enzyme on the basis of the activity measurements. The strategy that led to the isolation of the desired mutants

involved the following steps: (i) transformation of the recipient in the presence of methionine; (ii) check of the methionine phenotype of the Ura3+ transformants, and (iii) measurements of both activities in a Met and a Met colony. The results are shown in Table I. Methionyl-tRNA synthetase mutants could be isolated from Met⁻ colonies for N584Q, N584D, N584A, R588Q and R588K. Mutant F585A was not obtained by this genetic selection procedure. Our analysis did also select for second site revertants of the mes 1 locus. These clones grew well in the absence of methionine but showed little ATP-PPi exchange activity and tRNA aminoacylation (20 times less than the overproduced ATP-PPi exchange activity) but were not further analysed. In order to prove that the cloned mes1 mutants express a fulllength protein we performed a SDS-polyacrylamide gelelectrophoresis. Fig. 3 shows that this is indeed the case for all mutants analyzed and we could estimate the specific level of each mutant by immuno-blot analysis using polyclonal methionyl-tRNA synthetase antibodies. The specific activity of mutants N584D and R588Q in the crude extracts is 0.5-1.5% of that of the wild type and undetectable for mutants R588K, N584O and N584A (Table I). These effects are spectacular considering the

Table I

Measurement of the specific activity of wild type and methionyl-tRNA synthetase mutants

MetRS	In vivo complementation	Relative specific activity (%)	
		ATP/PPi exchange	Aminoacylation
wild type	+	100	100
N584D	_	60	0.5-1.5
N584Q	_	65	0.3
R588A	-	65	0
R588K	=	50	0.3
R588Q	_	75	0.5-1.5

Fig. 3. SDS-polyacrylamide gel analysis of yeast methionyl-tRNA synthetase (MetRS) mutants. Crude protein extracts from mutants (30 μg) and wild type enzyme (30 and 60 μg) were separated on a 10% SDS-polyacrylamide gel. (A) 0.5 μg of purified MetRS; (B) N584A; (C) N584D; (D) N584Q; (E) R588A; (F) R588K; (G) R588Q; (H) protein marker; (I) recipient strain FF1; (J) and (K) 60 and 30 μg of wild type MetRS. The arrow indicates the position of the native MetRS.

fact that in most cases semi-conservative amino acid substitutions were made. All these residues belong to the end of an α -helix that is directly adjacent to the CAU anticodon of the tRNA according to our docking experiments and may, therefore, represent residues that are implicated in tRNA binding or in the catalytic step. To clarify this problem, measurement of K_m and k_{cat} parameters of the purified proteins will be necessary. We have also tested the potential of the respective yeast mutants to aminoacylate tRNAMet transcripts with altered anticodon specificities (GAC, CCU, UAU and CAG). No mis-aminoacylation could be measured in vitro with the protein crude extracts previously purified by DEAE-cellulose chromatography. This result corroborates the absence of lethality noted when the corresponding yeast transformants were grown in the presence of methionine.

Acknowledgement: We thank G. Nussbaum for skilful technical assistance.

REFERENCES

 Brunie, S., Zelwer, C. and Risler, J.L. (1990) J. Mol. Biol. 216, 411-424.

- [2] Hountondji, C., Blanquet. S. and Lederer, F. (1985) Biochemistry 24, 1175-1180.
- [3] Mellot, P., Mechulam, Y., Le Corre, D., Blanquet, S. and Fayat, G. (1989) J. Mol. Biol. 208, 429-443.
- [4] Schulman, L.H. and Pelka, H. (1988) Science 242, 765-768.
- [5] Leon, O. and Schulman, L.D. (1987) Biochemistry 26, 5416– 5422.
- [6] Ghosh, G., Pelka, H. and Schulman, L.H. (1990) Biochemistry 29, 2220-2225.
- [7] Meinnel, T., Mechulam, Y., Lecorre, D., Panvert, M., Blanquet, S. and Fayat, G. (1991) Proc. Natl. Acad. Sci. USA 88, 291-295.
- [8] Perona, J.J., Rould, M.A., Steitz, T.A., Risler, J-L., Zelwer, Ch. and Brunie, S. (1991) Proc. Natl. Acad. Sci. USA 88, 2903–2907.
- [9] Chatton, B., Winsor, B., Boulanger, Y. and Fasiolo, F. (1987) J. Biol. Chem. 262, 15094-15097.
- [10] Sayers, J.R., Schmidt, W. and Eckstein, F. (1988) Nucleic Acids Res. 16, 791-802.
- [11] Sanger, F., Nicklen, S. and Coulsen, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [12] Dardel, F., Fayat, G. and Blanquet, S. (1984) J. Bacteriol. 160, 1115-1122.
- [13] Nureki, O., Muramatsu, T., Suzuki, K., Khoda, D., Matsuzawa, H., Ohta, T., Miyazawa, T. and Yokoyama, S. (1991) J. Biol. Chem. 266, 3268-3277.
- [14] Tzagoloff, A., Vambutas, A. and Aka, A. (1989) Eur. J. Biochem. (1989) 179, 365–369.